Shedding light on the metal-phthalocyanine EXAFS spectra through classical and ab initio molecular dynamics

Author:

Raposo-Hernández Gema1ORCID,Sánchez Marcos Enrique1ORCID,Pappalardo Rafael R.1ORCID,Martínez José M.1ORCID

Affiliation:

1. Departamento de Química Física, Universidad de Sevilla , 41012 Seville, Spain

Abstract

Extended X-Ray Absorption Fine Structure (EXAFS) theoretical spectra for some 3d transition metal-phthalocyanines–FePc, NiPc, CuPc, and ZnPc-are presented. Their complexity and rigidity make them a good testbed for the development of theoretical strategies that can complement the difficulties present in the experimental spectrum fitting. Classical and ab initio molecular dynamics trajectories are generated and employed as a source of structural information to compute average spectra for each MPc species. The original ZnPc force field employed in the classical molecular dynamics simulations has been modified in order to improve the agreement with the experimental EXAFS spectrum, and the modification strategy–based on MP2 optimized structures–being extended to the rest of MPcs. Both types of trajectories, classical and ab initio, provide very similar results, showing in all cases the main features present in the experimental spectra despite the different simulation timescales employed. Spectroscopical information has been analyzed on the basis of shells and legs contributions, making possible the comparison with the experimental fitting approaches. According to the simulations results, the simple relationships employed in the fitting process to define the dependence of the Debye Waller factors associated with multiple scattering paths with those of single scattering paths are reasonable. However, a lack of multiple backscattering paths contributions is found due to the intrinsic rigidity of the chemical motif (macrocycle). Its consequences in the Debye Waller factors of the fitted contributions are discussed.

Funder

Ministerio de Ciencia e Innovación

Consejería de Conocimiento, Investigación y Universidad, Junta de Andalucía

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3