Low-consumption stepper motor controller with real-time target position change responsiveness based on field programmable gate array

Author:

Shi Tong1ORCID,Guo Zhanshe1,Wang Tian1,Tan Haishu23,Zhou Fuqiang1

Affiliation:

1. School of Instrumentation and Optoelectronic Engineering, Beihang University 1 , Beijing 100191, China

2. School of Physics and Optoelectronic Engineering, Foshan University 2 , Foshan 528000, China

3. Ji Hua Laboratory 3 , Foshan 528000, China

Abstract

In response to the demand for low resource consumption, parallel control, and real-time response to target position changes in precision measurement and manufacturing of multi-axis stepper motor controllers, this paper proposes a field programmable gate array-based method for generating trapezoidal velocity profiles and pulse generation, which can easily keep parallelism and independence during multi-axis control. By avoiding using multiplication and division, this controller not only reduces resource consumption but also enhances the pulse output frequency. To address the real-time responsiveness of the velocity profile generation algorithm to changes in the target position during the control process, the algorithm introduces a novel real-time comparative state transition logic for speed control, which makes it capable of adjusting the acceleration within a single clock cycle, enabling its application in scenarios that require higher levels of real-time performance. Finally, the designed controller is applied to a four-axis positioning system for performance validation.

Funder

Jihua Laboratory

Publisher

AIP Publishing

Reference20 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3