Enhancement of magnetoelectric coupling in laminate composites of textured Fe–Ga thin sheet and PZT

Author:

Liu Jiande12ORCID,He Zhenghua12ORCID,Mi Chengdong12,Sha Yuhui3,Zhu Xiaofei4ORCID,Hao Hongbo5ORCID,Chen Lijia12ORCID,Zuo Liang3ORCID

Affiliation:

1. School of Materials Science and Engineering, Shenyang University of Technology 1 , Shenyang 110870, China

2. Shenyang Key Laboratory of Advanced Structural Materials and Applications, Shenyang University of Technology 2 , Shenyang 110870, China

3. Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University 3 , Shenyang 110819, China

4. Institute of Metal Research, Chinese Academy of Sciences 4 , Shenyang 110016, China

5. State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths 5 , Baotou 014030, China

Abstract

Magneto-mechano-electric (MME) generators consisting of piezoelectric and magnetostrictive materials can convert the stray magnetic noise to useful electric energy for the wireless sensor networks utilizing the magnetoelectric coupling effect and magnetic interactions. In this paper, a scalable engineering approach was proposed to fabricate the laminate MME generator composed of a PZT/Fe–Ga/PZT sandwich structure. The Goss-oriented Fe81Ga19 thin sheet with a large magnetostriction of 244 ppm was produced by a simple and low-cost approach, and the commercial polycrystalline piezoelectric ceramic products (PZT-5H) were used as the PZT layers. The effect of grain orientation, device structure, magnetic field amplitude, and resonance frequency on the electrical output of the PZT/Fe–Ga/PZT MME generator was investigated. The electrical output of the MME generator containing the Goss-oriented Fe81Ga19 thin sheet reached an AC voltage of 4.58 V and the ME coefficient of 76.33 V/cm·Oe under a low excitation magnetic field of 26 Oe at a low resonance frequency of 26 Hz. The MME generator with a Goss-oriented Fe–Ga layer shows 4.7 times higher output voltage and ME coupling coefficient than that with the no-oriented polycrystalline Fe–Ga layer, but only 81% of the latter’s resonance frequency. This is related to the significant increase in magnetostriction due to the texture transition after secondary recrystallization annealing at the temperature of 950 °C. This paper provides a very promising solution to meet the self-power supply needs of the Internet of Things utilizing low-value and low-frequency magnetic fields.

Funder

National Natural Science Foundation of China

Education Department Program of Liaoning Province

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3