Regulating evaporation of a water nanofilm by applying a terahertz alternating electric field

Author:

Zhu Jianzhuo1ORCID,Li Haosong1,Li Xingyuan1,Li Jingyuan2ORCID

Affiliation:

1. Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China

2. Zhejiang Province Key Laboratory of Quantum Technology and Device, Institute of Quantitative Biology, Department of Physics, Zhejiang University, Hangzhou 310027, China

Abstract

The evaporation of water nanofilms on a solid surface is a widespread and important process in many fields. Herein, we utilize molecular dynamics simulations to demonstrate that the evaporation of a water nanofilm is regulated by applying an alternating electric field (AEF). An AEF at a specific frequency can be resonantly absorbed by the water film. Consequently, the AEF with sufficient strength significantly increases the evaporation rate of the water film (R). In contrast, an AEF of a different frequency and polarization direction decreases R sharply, which is closely related to the strengthened hydrogen bond network and the reduced kinetic energy of the outermost water of the water film. When the maximum amplitude of the AEFs is 0.9 V/nm, which is achievable in a laboratory setting, R spans six orders of magnitude. The effects of applying the AEFs are quite distinct from those of changing the temperature. Notably, the polarization direction of the AEF plays an important role in the water evaporation. To the best of our knowledge, this is the first report on regulating the evaporation rate of a water film, showing that it is possible to use AEFs to tune the properties of nanoscaled water, such as the wettability.

Funder

Innovation Capbility Improvement Project of Hebei Province

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3