A virtual velocity-based integrated navigation method for strapdown inertial navigation system and Doppler velocity log coupled with unknown current

Author:

Wang Zixuan12ORCID,Liu Xixiang12ORCID,Wu Xiaoqiang123,Sheng Guangrun12ORCID,Huang Yongjiang12ORCID

Affiliation:

1. School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China

2. Key Laboratory of Micro-inertial Instrument and Advanced Navigation Technology, Ministry of Education, Nanjing 210096, China

3. Jiangsu Automation Research Institute, Lianyungang 222061, China

Abstract

The integration of the strapdown inertial navigation system (SINS) and Doppler velocity log (DVL) has become a basic navigation solution for Autonomous Underwater Vehicles (AUVs). However, DVL cannot obtain the velocity relative to the ground when the distance between the AUV and seabed is over the operating range, which occurs often when AUVs are sailing in the middle layer of the ocean. When the DVL velocity relative to the current is used for an integrated filter, the unknown current velocity is coupled with the measured velocity error, which decreases the positioning accuracy. To address this problem, the effect of unknown coupled current velocity is analyzed from the perspective of filter observability, and an integrated SINS/DVL/virtual velocity navigation method is proposed. The virtual velocity based on the velocity variation extracted from the inertial measurement unit and DVL is constructed and used as an aided measurement for the Kalman filter. With the help of virtual velocity, the current velocity can be easily decoupled from measured SINS velocity error. The results of simulation and experiments demonstrated that the proposed method can effectively improve both the convergence speed and accuracy of velocity error compared with the classical method with SINS/DVL integration and, thus, significantly improve the positioning accuracy.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A water track laser Doppler velocimeter for use in underwater navigation;Measurement Science and Technology;2024-02-02

2. Virtual Metrology Filter-Based Algorithms for Estimating Constant Ocean Current Velocity;Remote Sensing;2023-08-20

3. The Estimation of Ocean-current Velocity for AUV Using Optimization-Based Alignment;2023 9th International Conference on Automation, Robotics and Applications (ICARA);2023-02-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3