Shock characteristics evolution of detonation waves forward impacting on the solid wall

Author:

Hou Ziwei1,Huang Xiaolong1,Li Ning1ORCID,Weng Chunsheng1

Affiliation:

1. National Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China

Abstract

The forward reflection of detonation waves on the solid wall will lead to a high pressure rise. The research systematically introduced the theoretical, numerical, and experimental exploration on the shock propagation characteristics of detonation waves forward impacting on a solid wall in the present work. The one-dimensional shock theory was carried out to solve the pressure rise ratio in this process. The exact solution and its variation law of a positive increase with filling pressure were expressed. One-dimensional simulations based on the space-time conservation element and solution element method were utilized to reveal the pressure decrease and velocity increase laws for the reflected shock wave. The blockage, oscillation, and attenuation phenomena of detonation waves and reflected shock waves under the effect of the tube–wall reflection were demonstrated in two-dimensional works. Experimental results from the detonation tube pressure test system showed a larger amplitude and duration of the reflected shock wave than the detonation wave. Pressure evolution and the formation of pressure plateaus were consistent with the simulation results. In addition, the time required for the pressure plateaus to decay to 0.5 times the Chapman-Jouget (C–J) detonation pressure is relatively constant under different filling conditions.

Funder

The China Scholarship Council

>The Young Scientists Fund of the Natural Science Foundation of Jiangsu Province

>The Fundamental Research Funds of National Key Laboratory of Transient Physics

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3