Dispersion and orientation patterns in nanorod-infused polymer melts

Author:

Afrasiabian Navid1ORCID,Balasubramanian Venkat2,Denniston Colin1ORCID

Affiliation:

1. Department of Physics and Astronomy, University of Western Ontario 1 , 1151 Richmond Street, London, Ontario, Canada , N6A 3K7

2. Department of Applied Mathematics, University of Western Ontario 2 , 1151 Richmond Street, London, Ontario, Canada , N6A 5B7

Abstract

Introducing nanorods into a polymeric matrix can enhance the physical and mechanical properties of the resulting material. In this paper, we focus on understanding the dispersion and orientation patterns of nanorods in an unentangled polymer melt, particularly as a function of nanorod concentration, using molecular dynamics simulations. The system is comprised of flexible polymer chains and multi-thread nanorods that are equilibrated in the NPT ensemble. All interactions are purely repulsive except for those between polymers and rods. Results with attractive vs repulsive polymer–rod interactions are compared and contrasted. The concentration of rods has a direct impact on the phase behavior of the system. At lower concentrations, rods phase separate into nematic clusters, whereas at higher concentrations more isotropic and less structured rod configurations are observed. A detailed examination of the conformation of the polymer chains near the rod surface shows extension of the chains along the director of the rods (especially within clusters). The dispersion and orientation of the nanorods are a result of the competition between depletion entropic forces responsible for the formation of rod clusters, the enthalpic effects that improve mixing of rods and polymer, and entropic losses of polymers interpenetrating rod clusters.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3