Bifurcations in adaptive vascular networks: Toward model calibration

Author:

Klemm Konstantin1ORCID,Martens Erik A.2ORCID

Affiliation:

1. Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC, CSIC-UIB), Campus Universitat de les Illes Balears 1 , E-07122 Palma de Mallorca, Spain

2. Centre for Mathematical Sciences, Lund University 2 , Sölvegatan 18B, 22100 Lund, Sweden

Abstract

Transport networks are crucial for the functioning of natural and technological systems. We study a mathematical model of vascular network adaptation, where the network structure dynamically adjusts to changes in blood flow and pressure. The model is based on local feedback mechanisms that occur on different time scales in the mammalian vasculature. The cost exponent γ tunes the vessel growth in the adaptation rule, and we test the hypothesis that the cost exponent is γ=1/2 for vascular systems [D. Hu and D. Cai, Phys. Rev. Lett. 111, 138701 (2013)]. We first perform bifurcation analysis for a simple triangular network motif with a fluctuating demand and then conduct numerical simulations on network topologies extracted from perivascular networks of rodent brains. We compare the model predictions with experimental data and find that γ is closer to 1 than to 1/2 for the model to be consistent with the data. Our study, thus, aims at addressing two questions: (i) Is a specific measured flow network consistent in terms of physical reality? (ii) Is the adaptive dynamic model consistent with measured network data? We conclude that the model can capture some aspects of vascular network formation and adaptation, but also suggest some limitations and directions for future research. Our findings contribute to a general understanding of the dynamics in adaptive transport networks, which is essential for studying mammalian vasculature and developing self-organizing piping systems.

Funder

Ministerio de Ciencia e Innovación

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Reference23 articles.

1. Structural morphology of renal vasculature;Am. J. Physiol. Heart Circ. Physiol.,2006

2. Modeling of kidney hemodynamics: Probability-based topology of an arterial network;PLoS Comput. Biol.,2016

3. The glymphatic system: Current understanding and modeling;iScience,2022

4. Sap flow and sugar transport in plants;Rev. Mod. Phys.,2016

5. A. Martinez-Calvo , M. D.Biviano, A.Christensen, E.Katifori, K. H.Jensen, and M.Ruiz-Garcia, “The fluidic memristor: Collective phenomena in elastohydrodynamic networks,” arXiv:2303.10777 (2023).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3