Prediction of water anomalous properties by introducing the two-state theory in SAFT

Author:

Novak Nefeli1ORCID,Liang Xiaodong1ORCID,Kontogeorgis Georgios M.1ORCID

Affiliation:

1. Center for Energy Resources Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark , 2800 Kgs Lyngby, Denmark

Abstract

Water is one of the most abundant substances on earth, but it is still not entirely understood. It shows unusual behavior, and its properties present characteristic extrema unlike any other fluid. This unusual behavior has been linked to the two-state theory of water, which proposes that water forms different clusters, one with a high density and one with a low density, which may even form two distinct phases at low temperatures. Models incorporating the two-state theory manage to capture the unusual extrema of water, unlike traditional equations of state, which fail. In this work, we have derived the framework to incorporate the two-state theory of water into the Statistical-Associating-Fluid-Theory (SAFT). More specifically, we have assumed that water is an ideal solution of high density water molecules and low density water molecules that are in chemical equilibrium. Using this assumption, we have generalized the association term SAFT to allow for the simultaneous existence of the two water types, which have the same physical parameters but different association properties. We have incorporated the newly derived association term in the context of the Perturbed Chain-SAFT (PC-SAFT). The new model is referred to as PC-SAFT-Two-State (PC-SAFT-TS). Using PC-SAFT-TS, we have succeeded in predicting the characteristic extrema of water, such as its density and speed of sound maximum, etc., without loss of accuracy compared to the original PC-SAFT. This new framework is readily extended to mixtures, and PC-SAFT-TS manages to capture the solubility minimum of hydrocarbons in water in a straightforward manner.

Funder

Villum Fonden

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3