Dopant-enhanced sodium and potassium-ion adsorption and diffusion in two-dimensional titanium disulfide

Author:

Nair A. K.1ORCID,Da Silva C. M.1ORCID,Amon C. H.12ORCID

Affiliation:

1. Department of Mechanical and Industrial Engineering, University of Toronto 1 , 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada

2. Department of Chemical Engineering and Applied Chemistry, University of Toronto 2 , 200 College St., Toronto, Ontario M5S 3E5, Canada

Abstract

Two-dimensional (2D) titanium disulfide (TiS2) is the lightest transition-metal dichalcogenide (TMD). It exhibits relatively better adsorption and diffusion of sodium (Na) and potassium (K) ions than other TMDs, such as MoS2 (molybdenum disulfide) and ReS2 (rhenium disulfide), making it a promising anode material for alkali-ion batteries. Previous studies have found that doping significantly enhances the adsorption and diffusion capabilities of 2D TMDs. For the first time, this work reports the adsorption of Na and K ions on doped TiS2 monolayers using first-principles calculations, where the Ti atom is substituted by 3d-transition metals, including iron (Fe), cobalt (Co), nickel (Ni), and copper (Cu). Metal-atom doping induces remarkably stronger binding of alkali ions on the surface of TiS2, with adsorption energies ranging from −2.07 to −2.48 eV for Na and −2.59 to −3.00 eV for K. The diffusion barrier energies for alkali ions decrease in the proximity of the doping site and increase as the ions travel away from the doping site for Fe-, Co-, and Ni-doped TiS2. The average open circuit voltage increases dramatically when Na ions are adsorbed on Fe-doped TiS2 (by 62%) and Co-doped TiS2 (by 61%), while K ions result in a moderate improvement of 9% and 8%, respectively. These findings suggest that metal-atom doping considerably improves the electrochemical properties of 2D TiS2, potentially enabling its use as anode materials in Na- and K-ion batteries.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3