Computational quantum chemistry of metal–organic frameworks

Author:

Choudhuri Indrani1ORCID,Ye Jingyun2ORCID,Truhlar Donald G.1ORCID

Affiliation:

1. Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota 1 , Minneapolis, Minnesota 55455, USA

2. Department of Chemistry and Biochemistry, Duquesne University 2 , Pittsburgh, Pennsylvania 15282, USA

Abstract

Metal–organic frameworks (MOFs) have premium exceptional properties for a variety of functions, such as gas separation and storage and catalysis. The large variety of possible inorganometallic nodes and organic linkers provide an almost unlimited number of combinations for assembling MOFs, which makes the experimental characterization and examination of all potentially useful combinations practically impossible. Furthermore, experimental studies of MOFs typically fall short in uncovering crucial details regarding their mechanisms of action or the molecular details responsible for their functional properties, such as the nature of adsorbate binding or the structures of transition states. Computational modeling has, therefore, become an efficient and important tool for strategizing the functionalization of MOFs and explicating the mechanisms of their functions. Here, we review the computational methodologies used for computational studies of MOFs, especially Kohn–Sham density functional theory and combined quantum mechanical and molecular mechanical methods for calculating their structural, electronic, and magnetic properties, as well as for understanding the mechanisms of MOFs' applications to magetic devices, thermal conduction, gas adsorption, separation, storage, and sensing, thermal catalysis, photocatalysis, and electrocatalysis.

Funder

U.S. Department of Energy

Publisher

AIP Publishing

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3