Rippled blue phosphorene with tunable energy band structures and negative Poisson’s ratio

Author:

Li Rong1,Xiao Hang1ORCID,Chen Yan2ORCID

Affiliation:

1. School of Chemical Engineering, Northwest University 1 , Xi’an 710069, China

2. Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi’an Jiaotong University 2 , Xi’an 710049, China

Abstract

Recent successes in the discovery of novel two-dimensional (2-D) phosphorene allotropes have motivated more in-depth investigations into tuning their properties through precise geometric control. This is also driven by the fact that these materials, particularly blue phosphorene, are highly prone to wrinkling. In this work, we systematically study the mechanical and electronic behaviors of a series of rippled blue phosphorene PN (N = 8, 18, 32, 50, 72, 98) using density functional theory combined with molecular dynamic simulations. A novel approach to tailor the electronic energy band structure of blue phosphorene is proposed by wrinkle engineering, transforming the native indirect bandgap into a direct bandgap, and enabling bandgap tuning by modifying the undulation magnitude ratio. Furthermore, the mechanical behaviors of rippled blue phosphorene differ significantly along the 4-8-4 and 4-4-4 directions. Notably, negative Poisson’s ratio is observed under tension along the 4-4-4 direction. This work demonstrates new techniques for geometrically regulating blue phosphorene and potentially other 2-D materials. The findings also yield valuable insights for the design of novel 2-D auxetic semiconductors with tunable electronic properties.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3