Affiliation:
1. School of Microelectronics, University of Science and Technology of China 1 , Hefei 230026, China
2. Key Laboratory of Microelectronics Devices and Integration Technology, Institute of Microelectronics of Chinese Academy of Sciences 2 , Beijing 100029, China
Abstract
For the first time, a core drain current model based on surface potential without any implicit functions is developed for beta-phase gallium oxide (β-Ga2O3) power metal-oxide-semiconductor field-effect transistors (MOSFETs). The surface potential solution is analytically deduced by solving the Poisson equation with appropriate simplification assumptions in accumulation, partial-depletion, and full-depletion modes. Then, the drain current expression is analytically derived from the Pao–Sah integral as a function of the mobile charge density obtained from the surface potential at the source and drain terminals. In addition, nonlinear resistors in the source/drain access region are considered. It continuously predicts the characteristics of β-Ga2O3 power MOSFETs in all operation modes, including accumulation mode, partial-depletion mode, and full-depletion mode. Furthermore, the validity of the model is verified by comparing the results of the model with the numerical simulations carried out with the technology computer-aided design (TCAD) tool ATLAS Device Simulator from Silvaco. Good agreement between the proposed model and TCAD simulations is shown for β-Ga2O3 power MOSFETs with different intrinsic channel lengths, channel doping concentrations, and channel thicknesses. Ultimately, the Gummel symmetry test and the harmonic balance simulation test are performed to validate the model’s robustness and convergence.
Funder
National Natural Science Foundation of China
Strategic Priority Research Program of the Chinese Academy of Sciences
Key Research Program of Frontier Sciences of CAS
Fundamental Research Plan
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献