Performance analysis of solar thermal storage systems with packed bed utilizing form-stable phase change materials and heat pump integration

Author:

Wang Changling12ORCID,Gao Yuanzhi2,Yang Juan1,Liu Baobin1,Dai Zhaofeng2,Wu DongXu2,Xia Yujiang1,Yu Jing1,Yan Weidong1,Zhang Xiaosong2

Affiliation:

1. School of Internet of Things and Intelligent Engineering, Jiangsu Vocational Institute of Commerce 1 , No. 180 Longmian Avenue, Jiangning District, Nanjing 211168, China

2. School of Energy and Environment, Southeast University 2 , 210016 Nanjing, China

Abstract

Solar energy, a pivotal renewable resource, faces operational challenges due to its intermittent and unstable power output. Thermal energy storage systems emerge as a promising solution, with phase change materials (PCMs) packed beds attracting attention for their compactness and stable temperature transitions. This paper details a laboratory-scale solar thermal storage PCM packed bed integrated with a heat pump, utilizing a novel form-stable PCM. A numerical model was established to assess the thermal storage characteristics and heat extraction performance of the solar PCM packed bed coupled with a heat pump. Simulation results show that increasing solar irradiance significantly reduces storage duration, achieving full thermal storage in 3.4 h at 900 W/m2 irradiance. Optimal starting times were identified as 9:00 a.m. or 11:00 a.m., with later starts resulting in incomplete storage due to the PCM not reaching its phase change temperature. Additionally, packed bed parameters influenced storage conditions; increasing the paraffin content in the PCM extended the phase change duration, while graphene nanoparticles slightly reduced it. Lower porosity (0.49) beds, with higher PCM content, reached 70 °C quicker than higher porosity (0.61) beds due to higher pressure drops promoting more uniform flow and temperature distribution. During heat extraction, coupling the heat pump at 2 liters/min achieved temperatures below 45 °C in 4.1 h, while at 6 liters/min, the time reduced to 1.6 h, demonstrating adaptability to different extraction rates. These findings provide insight into the thermal performance of solar PCM packed beds coupled with heat pumps, contributing to efficient and stable thermal utilization of solar energy.

Funder

National Science Foundation of China

Excellent Science and Technology Innovation Team of Jiangsu Higher Education Institution

Jiangsu Vocational Institute of Commerce Starup Fund for PhD Talents

Jiangsu Higher Institution "Qinglan" Project

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3