Affiliation:
1. School of Internet of Things and Intelligent Engineering, Jiangsu Vocational Institute of Commerce 1 , No. 180 Longmian Avenue, Jiangning District, Nanjing 211168, China
2. School of Energy and Environment, Southeast University 2 , 210016 Nanjing, China
Abstract
Solar energy, a pivotal renewable resource, faces operational challenges due to its intermittent and unstable power output. Thermal energy storage systems emerge as a promising solution, with phase change materials (PCMs) packed beds attracting attention for their compactness and stable temperature transitions. This paper details a laboratory-scale solar thermal storage PCM packed bed integrated with a heat pump, utilizing a novel form-stable PCM. A numerical model was established to assess the thermal storage characteristics and heat extraction performance of the solar PCM packed bed coupled with a heat pump. Simulation results show that increasing solar irradiance significantly reduces storage duration, achieving full thermal storage in 3.4 h at 900 W/m2 irradiance. Optimal starting times were identified as 9:00 a.m. or 11:00 a.m., with later starts resulting in incomplete storage due to the PCM not reaching its phase change temperature. Additionally, packed bed parameters influenced storage conditions; increasing the paraffin content in the PCM extended the phase change duration, while graphene nanoparticles slightly reduced it. Lower porosity (0.49) beds, with higher PCM content, reached 70 °C quicker than higher porosity (0.61) beds due to higher pressure drops promoting more uniform flow and temperature distribution. During heat extraction, coupling the heat pump at 2 liters/min achieved temperatures below 45 °C in 4.1 h, while at 6 liters/min, the time reduced to 1.6 h, demonstrating adaptability to different extraction rates. These findings provide insight into the thermal performance of solar PCM packed beds coupled with heat pumps, contributing to efficient and stable thermal utilization of solar energy.
Funder
National Science Foundation of China
Excellent Science and Technology Innovation Team of Jiangsu Higher Education Institution
Jiangsu Vocational Institute of Commerce Starup Fund for PhD Talents
Jiangsu Higher Institution "Qinglan" Project