Queue-aware computation offloading for UAV-assisted edge computing in wind farm routine inspection

Author:

Han Yinghua1ORCID,Xu Qinqin1ORCID,Zhao Qiang2ORCID,Si Fangyuan34ORCID

Affiliation:

1. School of Computer and Communication Engineering, Northeastern University at Qinhuangdao 1 , Qinhuangdao 066004, China

2. School of Control Engineering, Northeastern University at Qinhuangdao 2 , Qinhuangdao 066004, China

3. Beijing Jiaotong University, School of Electrical Engineering 3 , Beijing, China

4. Beijing Engineering Research Center of Electric Rail Transportation 4 , Beijing, China

Abstract

Integration of unmanned aerial vehicles (UAVs) and edge computing into the wind farm routine inspection provides a promising approach to enhancing inspection effectiveness and decreasing operation maintenance costs. In light of the finite battery power and computational capacity of UAVs, a dynamic queue-aware UAV-assisted edge computing inspection wind farm framework is investigated with the goal of minimizing the long-term energy consumption of UAVs. The Lyapunov optimization theory is utilized to decouple the long-term stochastic optimization problem into four short-term deterministic subproblems, including the task splitting, the UAV-side computing resource allocation, the task offloading, and the edge server-side computing resource allocation. Furthermore, a Lyapunov optimization-based dynamic queue-aware computation offloading algorithm (LODQCO) is presented to optimize task offloading and resource allocation jointly. The optimal UAV-side computing resource is determined by a closed form formula, and then the optimal task offloading decision is tackled by applying the classical interior point method. Finally, the edge server-side computing resource is addressed via a linear optimization CPLEX solver. Based on simulation results, LODQCO is superior to the benchmark algorithms with respect to the energy consumption, queue backlogs, and queuing delays.

Funder

National Natural Science Foundation of China

Colleges and Universities in Hebei Province Science Research Program

the Fundamental Research Funds for the Central Universities

Publisher

AIP Publishing

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3