Four-wave mixing based spectral Talbot amplifier for programmable purification of optical frequency combs

Author:

Li Zijian1ORCID,Xie Qijie2ORCID,Zhang Yuanfei1ORCID,Zhang Honghui1ORCID,Huang Chaoran1ORCID,Shu Chester1ORCID

Affiliation:

1. Center for Advanced Research in Photonics, Department of Electronic Engineering, The Chinese University of Hong Kong 1 , Shatin, N.T., Hong Kong, China

2. Peng Cheng Laboratory 2 , No. 2, Xingke 1st. Street, Nanshan, Shenzhen, China

Abstract

Optical frequency combs (OFCs) with programmable free spectral range and high optical carrier-to-noise ratio (CNR) play a crucial role in diverse research fields, including telecommunications, spectroscopy, quantum information, astronomy, sensing, and imaging. Unfortunately, the presence of stochastic noise often results in degraded optical CNR, leading to limited communication performance and measurement accuracy in comb-based systems. There is a lack of effective and flexible methods to improve the CNR of OFCs contaminated by broadband noise, hampering their widespread utilization. To address this challenge, we propose a four-wave mixing based spectral Talbot amplifier to purify OFCs flexibly. Our approach employs programmable spectral phase filters followed by a nonlinear Kerr medium to regenerate an OFC with superior CNR. In our experimental demonstration, we regenerated a 165-GHz spaced CNR enhanced OFC from a noise-dominated comb source spaced at 11 GHz, achieving up to ∼11-dB CNR improvement. The technique allows for a user-defined purification factor m to range from 7 to 15. Furthermore, our scheme demonstrates flexibility in adjusting the wavelengths of the regenerated comb lines via a tunable optical delay line without the need for a tunable seed laser. We also investigated the impact of the pump and signal on the regenerated comb experimentally and studied the influence of dispersion mismatch on the suppression of undesired sidebands numerically. Our proposed scheme presents a powerful alternative for programmable purification, manipulation, and detection of noise-dominated spectral waveforms.

Funder

Joint Research Fund for Overseas Chinese Scholars and Scholars in Hong Kong and Macao

National Natural Science Foundation of China

Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

Research Grants Council, University Grants Committee

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3