A deep learning framework for aerodynamic pressure prediction on general three-dimensional configurations

Author:

Shen YangORCID,Huang WeiORCID,Wang Zhen-guoORCID,Xu Da-fu,Liu Chao-Yang

Abstract

In this paper, a deep learning framework is proposed for predicting aerodynamic pressure distributions in general three-dimensional configurations. Based on the PointNet++ structure, the proposed framework extracts shape features based on the geometric representation of point cloud, outputs pressure coefficients corresponding to locations, and is able to accept inputs of point clouds with different resolutions. By PointNet++, we mean that local and global features of three-dimensional configurations could be effectively extracted through a multi-level feature extraction structure. A parametric approach is utilized to generate 2000 different space shuttle three-dimensional shapes, and their flows at the hypersonic speed are solved by computational fluid dynamics (CFD) as a dataset to support the training of the deep learning. Within the dataset, accurate predictions of pressure and aerodynamic forces are demonstrated for 400 unseen testing shapes. Out of the dataset, geometries that are tested for generalizability include slender, waverider, spaceplane, Apollo capsule, lifting body, and rocket. Remarkably, the framework is capable of predicting pressure distributions and aerodynamic forces for the unseen, independently designed geometries of various types in near-real-time and near-CFD accuracy, proving its excellent applicability to general three-dimensional configurations.

Funder

Natural Science Foundation of Hunan Province

Key Technologies Research and Development Program

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3