Thermochemical non-equilibrium hypersonic flow over a rectangular cavity embedded on a compression ramp

Author:

Redding Jeremy1ORCID,Gamertsfelder Jacob12ORCID,Bravo Luis3ORCID,Khare Prashant1ORCID

Affiliation:

1. Department of Aerospace Engineering, University of Cincinnati 1 , Cincinnati, Ohio 45221-0070, USA

2. Oak Ridge Associated Universities (ORAU), Aberdeen Proving Ground 2 , Maryland 21005, USA

3. DEVCOM Army Research Laboratory, Aberdeen Proving Ground 3 , Maryland 21005, USA

Abstract

This paper reports a systematic computational investigation that elucidates the fundamental thermochemical non-equilibrium physics that occurs when air at Mach number of 11 encounters a rectangular cavity of aspect ratio L/D = 2.0 embedded on a 25° compression ramp. The mechanistic details of this highly complex flow phenomenon are obtained by solving the compressible form of the Navier–Stokes equations in two dimensions using a finite-volume open-source library. Chemical and thermal non-equilibrium processes are treated using a five-species, 12-reaction chemical kinetics, and a two-temperature model, respectively. Following a detailed validation and grid sensitivity study, two simulations are conducted, one with isothermal boundary conditions and the other with conjugate heat transfer (CHT) to identify the effect of energy transmission to the material on surface heat flux. Fast Fourier transforms and near-wall velocity profiles inside and in the neighborhood of the cavity are used to identify primary oscillatory modes and shear layer dynamics. Two new descriptive states defined as “states I and II,” representative of the minimum and maximum deflection of the shear layer, are used to discuss the dynamical behaviors in the cavity, including the separation region before the cavity, trailing edge effects, frequency analysis of probe data collected at several key locations, and the effect of CHT on surface heat flux. It is found that the flow features at the cavity's center strongly influence the separation upstream of the cavity, and the transrotational temperature near the cavity's trailing edge is strongly correlated with the oscillations of the shear layer.

Funder

DEVCOM Army Research Laboratory

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3