Low-frequency shear Alfvén waves at DIII-D: Theoretical interpretation of experimental observations

Author:

Ma Ruirui12ORCID,Heidbrink W. W.3ORCID,Chen Liu234ORCID,Zonca Fulvio24ORCID,Qiu Zhiyong24ORCID

Affiliation:

1. Southwestern Institute of Physics 1 , P.O. Box 432, Chengdu 610041, China

2. Center for Nonlinear Plasma Science and C.R. ENEA Frascati 2 , C.P. 65, 00044 Frascati, Italy

3. Department of Physics and Astronomy, University of California 3 , Irvine, California 92697-4574, USA

4. Institute for Fusion Theory and Simulation, School of Physics, Zhejiang University 4 , Hangzhou 310027, People's Republic of China

Abstract

The linear properties of the low-frequency shear Alfvén waves such as those associated with the beta-induced Alfvén eigenmodes (BAEs) and the low-frequency modes observed in reversed-magnetic-shear DIII-D discharges [W. Heidbrink et al., Nucl. Fusion 61, 066031 (2021)] are theoretically investigated and delineated based on the theoretical framework of the general fishbone-like dispersion relation (GFLDR). By adopting representative experimental equilibrium profiles, it is found that, even though both modes are predominantly of Alfvénic polarization, the low-frequency mode is a reactive unstable mode with weak coupling to the energetic particles, while the BAE involves a dissipative instability due to resonant excitation by the energetic ions. Thus, the low-frequency mode is more appropriately called a low-frequency Alfvén mode (LFAM). Moreover, the ascending frequency spectrum patterns of the experimentally observed BAEs and LFAMs can be theoretically reproduced by varying qmin and also be well interpreted based on the GFLDR. The present analysis illustrates the solid predictive capability of the GFLDR and its practical usefulness in enhancing the interpretative capability of both experimental and numerical simulation results.

Funder

National Key Research and Development Program of China

National Science Foundation of China

Natural Science Foundation of Sichuan Province

Sichuan Science and Technology Program

Euratom Research and Training Programme

U.S. Department of Energy

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3