Cell integrity maintenance and genetic transfection of protoplasts in an acoustofluidic system

Author:

Shen Xiaotian1ORCID,Zhang JieyiORCID,Zhang Tianjiao2ORCID,Wang Shuaiqi2ORCID,Han Ziyu1,Wang Jiehua2ORCID,Duan Xuexin1

Affiliation:

1. State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Opto-electronics Engineering, Tianjin University 2 , Tianjin 300072, China

2. School of Environmental Science and Engineering, Tianjin University 1 , Tianjin 300072, China

Abstract

Hydrodynamic force loading platforms based on acoustofluidics have been developed to study the mechanical deformation of cancer cells and to control cell behavior. However, so far there have been no experimental measurements on living plant cells using such an acoustic approach. Unique structures, including cell walls, allow plant cells to exhibit more variation in mechanical resistance. In this work, we analyzed plant cell deformation and membrane permeability using a gigahertz (GHz) acoustofluidic system. By recording the proportion of intact cells in the cell population, we evaluated the mechanical resistance of the protoplasts to the hydrodynamic forces of the acoustic streaming. The results showed that a regenerated primary cell wall (PCW) could significantly improve the mechanical resistance of individual plant cells within 24 h compared to the freshly prepared protoplasts without walls. The results of enzymatic degradation showed that three main components of the primary cell wall contribute to different degrees to the improvement of the mechanical properties of the cells, in decreasing order: cellulose, hemicellulose, and pectin. Furthermore, we have shown that such an acoustofluidic system can alter the permeability of the protoplast membrane in a controllable manner for transient gene expression.

Funder

National Natural Science Foundation of China

Tianjin Research Innovation Project for Postgraduate Students

Higher Education Discipline Innovation Project

Foundation for talent scientists of Nanchang institute for microtechnology of Tianjin University

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3