Interference is in the eye of the beholder: Application to the coherent control of collisional processes

Author:

Devolder Adrien1ORCID,Tscherbul Timur V.2ORCID,Brumer Paul1ORCID

Affiliation:

1. Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto 1 , Toronto, Ontario M5S 3H6, Canada

2. Department of Physics, University of Nevada 2 , Reno, Nevada 89557, USA

Abstract

Interference is widely regarded as a foundational attribute of quantum mechanics. However, for a given experimental arrangement, interference can either contribute or not contribute to the outcome depending upon the basis in which it is measured. This observation is both foundational and particularly relevant to coherent control of molecular processes, an approach based upon quantum interference. Here, we address this issue and its relevance to controlling molecular processes via the “coherent control scattering (CCS) matrix,” a formalism that allows for an analysis of modifications in an interference structure resulting from a change of basis. This analysis reveals that the change in the interference structure can be attributed to the non-commutativity of the transformation matrix with the CCS matrix and the non-orthogonality of the transformation. Additionally, minimal interference is shown to be associated with the CCS eigenbasis and that the Fourier transform of the eigenvectors of the CCS matrix provides the maximal interference and hence the best coherent control. The change of controllability through a change of basis is illustrated with an example of 85Rb+ 85Rb scattering. In addition, the developed formalism is applied to explain recent experimental results on He + D2 inelastic scattering demonstrating the presence or absence of interference depending on the basis.

Funder

Air Force Office of Scientific Research

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3