Detecting intrinsic global geometry of an obstacle via layered scattering

Author:

Bunimovich Leonid1,Katz Gabriel2ORCID

Affiliation:

1. School of Mathematics, Georgia Institute of Technology, North Avenue, Atlanta, Georgia 30332, USA

2. Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA

Abstract

Given a closed [Formula: see text]-dimensional submanifold [Formula: see text], encapsulated in a compact domain [Formula: see text], [Formula: see text], we consider the problem of determining the intrinsic geometry of the obstacle [Formula: see text] (such as volume, integral curvature) from the scattering data, produced by the reflections of geodesic trajectories from the boundary of a tubular [Formula: see text]-neighborhood [Formula: see text] of [Formula: see text] in [Formula: see text]. The geodesics that participate in this scattering emanate from the boundary [Formula: see text] and terminate there after a few reflections from the boundary [Formula: see text]. However, the major problem in this setting is that a ray (a billiard trajectory) may get stuck in the vicinity of [Formula: see text] by entering some trap there so that this ray will have infinitely many reflections from [Formula: see text]. To rule out such a possibility, we modify the geometry of a tube [Formula: see text] by building it from spherical bubbles. We need to use [Formula: see text] many bubbling tubes [Formula: see text] for detecting certain global invariants of [Formula: see text], invariants that reflect its intrinsic geometry. Thus, the words “layered scattering” are in the title. These invariants were studied by Hermann Weyl in his classical theory of tubes [Formula: see text] and their volumes.

Funder

Division of Mathematical Sciences

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recovering obstacles from their traveling times;Chaos: An Interdisciplinary Journal of Nonlinear Science;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3