Numerical analysis of electrohydrodynamic jet printing under constant and step change of electric voltages

Author:

Guan Yin1ORCID,Wu Shuang1,Wang Mengduo1,Tian Yu2ORCID,Lai Wuxing2ORCID,Huang YongAn2ORCID

Affiliation:

1. School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China

2. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China

Abstract

Electrohydrodynamic (EHD) jet printing is a highly effective technique for micro/nanoscale three-dimensional manufacturing. However, due to the complicated electrohydrodynamic mechanisms behind liquid deformation and jet emission, the printing process with remarkable droplet consistency and excellent controllability is still under investigation. In this work, a numerical analysis is conducted on EHD jet printing under constant and step change of electric voltages. We first examine constant-voltage-based pulsating EHD jet printing and explain the impacts of voltage on the regimes, deposited droplet volumes, and durations of the three key printing stages, namely, cone formation, jetting, and jet/meniscus retraction and oscillation. After that, we carry out a comprehensive investigation on EHD jet printing under various step changes of voltages while focusing on the jet behaviors at the voltage switch and after detaching from the Taylor cone. With the assistance of the electric field distribution, interface charge density, velocity fields, and very clear liquid motion images obtained from the numerical data, we fully inspect the pulsed printing processes and elucidate the influences of the pulse time, bias voltage, and peak voltage on the printing behaviors, durations of the three printing stages, and deposited droplet volumes. Finally, based on the obtained results, we make a comparison of the printing outcomes between these two techniques. The findings discovered in this work can be used for advancing the understanding and controlling methods of this complicated but very useful manufacturing technology.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3