Thermoelectric model to study the cardiac action potential and arrhythmias

Author:

Djoumessi R. T.1,Rafiroiu Dan-Viorel2ORCID,Pelap F. B.1ORCID

Affiliation:

1. UR de Mécanique et de Modélisation des Systèmes Physiques (UR-2MSP), Faculté des Sciences, Université de Dschang, BP 69 Dschang, Cameroon

2. Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania

Abstract

This paper proposes a new thermoelectric model to examine the behavior of the heart in cooling situations. A modified Karma model with temperature-dependence is exploited to describe the ion exchange dynamics at the mesoscopic scale while the propagation of the action potential is governed by a mono-domain equation at the macroscopic scale. In addition to perfusion and heat metabolism, we call the Penne equation coupled to the mono-domain equation by using the Joule effect to depict the temperature behavior in the system. Galerkin’s finite element method is utilized to start solving the partial differential equations governing the action potential and temperature propagations. The incomplete lower–upper decomposition and generalized minimal residual methods are solicited to solve the resulting nonlinear system. The cases of zero temperature and potential gradients are integrated through the scheme of Runge–Kutta, and the results obtained corroborate well with those of the literature. We analyze the contributions of the nonlinear coupling tensor and arterial temperature on the thermal and electrical responses of the system. The established results reveal that when the temperature in the medium augments, the duration of the action potential decreases and the Joule coupling tensor plays a crucial role in the propagation of the potential. Moreover, we show that temperature and action potential are in phase and that propagation of this potential generates thermal energy. Furthermore, we establish the existence of spiral waves in heart cells and show that the effect of global cooling helps to modulate or dampen these spiral waves, leading to control of the cardiac arrhythmia. This work also develops a technique to resolve conduction disorders and cancel them completely. It exhibits an increased added value to the use of hypothermia as therapy during cardiac arrest and makes it possible to anticipate and perhaps avoid this pathology.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3