Machine learning guided optimal composition selection of niobium alloys for high temperature applications

Author:

Mohanty Trupti1ORCID,Chandran K. S. Ravi1ORCID,Sparks Taylor D.1ORCID

Affiliation:

1. Department of Materials Science and Engineering, University of Utah , Salt Lake City, Utah 84112, USA

Abstract

Nickel- and cobalt-based superalloys are commonly used as turbine materials for high-temperature applications. However, their maximum operating temperature is limited to about 1100 °C. Therefore, to improve turbine efficiency, current research is focused on designing materials that can withstand higher temperatures. Niobium-based alloys can be considered as promising candidates because of their exceptional properties at elevated temperatures. The conventional approach to alloy design relies on phase diagrams and structure–property data of limited alloys and extrapolates this information into unexplored compositional space. In this work, we harness machine learning and provide an efficient design strategy for finding promising niobium-based alloy compositions with high yield and ultimate tensile strength. Unlike standard composition-based features, we use domain knowledge-based custom features and achieve higher prediction accuracy. We apply Bayesian optimization to screen out novel Nb-based quaternary and quinary alloy compositions and find these compositions have superior predicted strength over a range of temperatures. We develop a detailed design flow and include Python programming code, which could be helpful for accelerating alloy design in a limited alloy data regime.

Funder

Advanced Research Projects Agency - Energy

Publisher

AIP Publishing

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3