Key role of neuronal diversity in structured reservoir computing

Author:

Thivierge Jean-Philippe12ORCID,Giraud Eloïse2,Lynn Michael13ORCID,Théberge Charbonneau Annie2

Affiliation:

1. University of Ottawa Brain and Mind Research Institute, 451 Smyth Rd., Ottawa, Ontario K1H 8M5, Canada

2. School of Psychology, University of Ottawa, 156 Jean-Jacques Lussier, Ottawa, Ontario K1N 6N5, Canada

3. Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, Ontario K1H 8M5, Canada

Abstract

Chaotic time series have been captured by reservoir computing models composed of a recurrent neural network whose output weights are trained in a supervised manner. These models, however, are typically limited to randomly connected networks of homogeneous units. Here, we propose a new class of structured reservoir models that incorporates a diversity of cell types and their known connections. In a first version of the model, the reservoir was composed of mean-rate units separated into pyramidal, parvalbumin, and somatostatin cells. Stability analysis of this model revealed two distinct dynamical regimes, namely, (i) an inhibition-stabilized network (ISN) where strong recurrent excitation is balanced by strong inhibition and (ii) a non-ISN network with weak excitation. These results were extended to a leaky integrate-and-fire model that captured different cell types along with their network architecture. ISN and non-ISN reservoir networks were trained to relay and generate a chaotic Lorenz attractor. Despite their increased performance, ISN networks operate in a regime of activity near the limits of stability where external perturbations yield a rapid divergence in output. The proposed framework of structured reservoir computing opens avenues for exploring how neural microcircuits can balance performance and stability when representing time series through distinct dynamical regimes.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3