Directional extremal statistics for Ginibre eigenvalues

Author:

Cipolloni Giorgio1ORCID,Erdős László2ORCID,Schröder Dominik3ORCID,Xu Yuanyuan2ORCID

Affiliation:

1. Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA

2. IST Austria, Am Campus 1, A-3400 Klosterneuburg, Austria

3. Institute for Theoretical Studies, ETH Zurich, Clausiusstrasse 47, 8092 Zurich, Switzerland

Abstract

We consider the eigenvalues of a large dimensional real or complex Ginibre matrix in the region of the complex plane where their real parts reach their maximum value. This maximum follows the Gumbel distribution and that these extreme eigenvalues form a Poisson point process as the dimension asymptotically tends to infinity. In the complex case, these facts have already been established by Bender [Probab. Theory Relat. Fields 147, 241 (2010)] and in the real case by Akemann and Phillips [J. Stat. Phys. 155, 421 (2014)] even for the more general elliptic ensemble with a sophisticated saddle point analysis. The purpose of this article is to give a very short direct proof in the Ginibre case with an effective error term. Moreover, our estimates on the correlation kernel in this regime serve as a key input for accurately locating [Formula: see text] for any large matrix X with i.i.d. entries in the companion paper [G. Cipolloni et al., arXiv:2206.04448 (2022)].

Funder

European Research Council

Walter Haefner Stiftung

ETH Zürich Foundation

Publisher

AIP Publishing

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The complex elliptic Ginibre ensemble at weak non-Hermiticity: bulk spacing distributions;Journal of Physics A: Mathematical and Theoretical;2024-06-06

2. The complex elliptic Ginibre ensemble at weak non-Hermiticity: Edge spacing distributions;Random Matrices: Theory and Applications;2024-06-04

3. Precise asymptotics for the spectral radius of a large random matrix;Journal of Mathematical Physics;2024-06-01

4. Extremal statistics of quadratic forms of GOE/GUE eigenvectors;The Annals of Applied Probability;2024-02-01

5. Finite size corrections for real eigenvalues of the elliptic Ginibre matrices;Random Matrices: Theory and Applications;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3