Interplay of multiple clusters and initial interface positioning for forward flux sampling simulations of crystal nucleation

Author:

Blow Katarina E.1ORCID,Tribello Gareth A.2ORCID,Sosso Gabriele C.3ORCID,Quigley David1ORCID

Affiliation:

1. Department of Physics, University of Warwick 1 , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom

2. Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen’s University Belfast 2 , Belfast BT7 1NN, United Kingdom

3. Department of Chemistry, University of Warwick 3 , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom

Abstract

Forward flux sampling (FFS) is a path sampling technique widely used in computer simulations of crystal nucleation from the melt. In such studies, the order parameter underpinning the progress of the FFS algorithm is often the size of the largest crystalline nucleus. In this work, we investigate the effects of two computational aspects of FFS simulations, using the prototypical Lennard-Jones liquid as our computational test bed. First, we quantify the impact of the positioning of the liquid basin and first interface in the space of the order parameter. In particular, we demonstrate that these choices are key to ensuring the consistency of the FFS results. Second, we focus on the frequently encountered scenario where the population of crystalline nuclei is such that there are multiple clusters of size comparable to the largest one. We demonstrate the contribution of clusters other than the largest cluster to the initial flux; however, we also show that they can be safely ignored for the purposes of converging a full FFS calculation. We also investigate the impact of different clusters merging, a process that appears to be facilitated by substantial spatial correlations—at least at the supercooling considered here. Importantly, all of our results have been obtained as a function of system size, thus contributing to the ongoing discussion on the impact of finite size effects on simulations of crystal nucleation. Overall, this work either provides or justifies several practical guidelines for performing FFS simulations that can also be applied to more complex and/or computationally expensive models.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3