Epitaxial GaSb films directly grown on on-axis Si(001) with low defect density by MBE

Author:

Han Dong1ORCID,Wei Wen-Qi2ORCID,Ming Ming13ORCID,Wang Zihao123ORCID,Wang Ting123ORCID,Zhang Jian-Jun123ORCID

Affiliation:

1. Institute of Physics, Chinese Academy of Sciences 1 , 100190 Beijing, China

2. Songshan Lake Materials Laboratory 2 , 523808 Dongguan, Guangdong, China

3. School of Physical Sciences, University of Chinese Academy of Sciences 3 , 100190 Beijing, China

Abstract

In recent years, GaSb-on-Si direct heteroepitaxy has been highly desirable to extend the operating wavelength range into mid-infrared and high-mobility applications, such as free-space communications, gas sensing, and hyperspectral imaging. High-quality GaSb films on Si remain challenging due to the high density of defects generated during the growth. For this purpose, epitaxial GaSb films were grown by molecular beam epitaxy on on-axis Si(001). Due to the large lattice mismatch (12.2%) between GaSb and Si, here, we proposed a radical design and growth strategy with the primary objective of achieving the annihilation of antiphase boundaries (APBs) and the reduction of threading dislocation density (TDD). Benefitting from a V-grooved Si hollow structure, we demonstrated the growth of emerging-APB-free GaSb film on Si(001) with low mosaicity. Moreover, by introducing InGaSb/GaSb dislocation filtering layers, the atomically flat surface root mean square roughness is improved to 0.34 (on Si) and 0.14 nm (on GaAs/Si). Moreover, the corresponding TDD can be reduced to 3.5 × 107 and 2 × 107 cm−2, respectively, one order of magnitude lower than the minimum value found in the literature. These reported results are a powerful lever to improve the overall quality of epitaxial Si-based antimonide, which is of high interest for various devices and critical applications, such as laser diodes, photo-detectors, and solar cells.

Funder

National Key Research and Development Program of China

National Nature Science Foundation of China

Youth Innovation Promotion Association

National Science Fund for Distinguished Young Scholars

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3