Fragmentation of inviscid liquid and destination of satellite droplets

Author:

Li Dege1ORCID,Cao Yi1,Huang Bingfang1,Wu Xinlei1,Hu Guofang1,Wang Xiaolong2,Liu Yonghong1ORCID,Zhang Yanzhen1ORCID

Affiliation:

1. College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China

2. Dongying Science and Technology Bureau, Dongying 257000, China

Abstract

The breakup process of the inviscid liquid bridge sandwiched between two coaxial and equal-sized rods is investigated by tracking its profile. Here, the focus is on the quasi-static profile of the liquid bridge close to rupture and its influence on the subsequent dynamic breakup behaviors. With the increasing distance between the two rods, the profile of the liquid bridge close to rupture undergoes a transition from symmetry to asymmetry. We found there exists a critical slenderness above which the liquid bridge will be asymmetric and present a profile that can be well fitted by one cycle of the sine wave. It is demonstrated both experimentally and theoretically that the ratio of the length of the bridge to its equivalent radius, defined as geometric mean of the radii at the peak and trough of the bridge, is always [Formula: see text] for the asymmetric bridge close to rupture. Different with the symmetric evolution of the short bridge, the long asymmetric bridge pinches off first from the side near the bigger sessile drop and then from the other side, which endows the satellite droplet with a lateral momentum, resulting in the satellite re-collected by the sessile drop. The influence of the slenderness on the time interval among the asymmetric pinch-off, velocity, destination, and size of the satellite was investigated. A scaling law was proposed to describe the relationship between the lateral momentum of the satellite and the time interval between two pinch-off. This work is expected to benefit the utilizing or suppressing the satellite in practice.

Funder

National Natural Science Foundation of China

Taishan Scholar Project of Shandong Province

Excellent Young Scientists Fund of Shandong Province

the Fundamental Research Funds for the Central Universities

The Science and Technology Support Plan for Youth Innovation of Universities in Shandong Province

National Key Research and Development Program of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3