Influence of incoming turbulence and shear on the flow field and performance of a lab-scale roof-mounted vertical axis wind turbine

Author:

Jooss Y.1ORCID,Hearst R. J.1ORCID,Bracchi T.1ORCID

Affiliation:

1. Department of Energy and Process Engineering, Norwegian University of Science and technology , Trondheim, Norway

Abstract

Flow conditions in an urban environment are complex, featuring varying levels of turbulence intensity and shear. The influence of these flow characteristics on the performance of a roof-mounted vertical axis wind turbine of the Savonius (drag) type is investigated at lab scale. Five different inflow conditions are generated with an active grid in a wind tunnel, covering turbulence intensities from 0.9% to 11.5% and relative vertical shear from 0% to 17%. The flow field is captured using particle image velocimetry, and the power output of the turbine is assessed through measurements of the converted power. The set-up consists of two-surface mounted cubes aligned with each other in the main flow direction, spaced apart by two cube heights. The turbine is placed on top of these model buildings at six different streamwise positions along the centerline and at two different heights. It was observed that the turbulence intensity in the inflow has a significant impact on the flow field and also on the power output of the turbine. The increasing turbulence intensity leads to smaller regions of recirculating flow. Thus, the turbine experiences higher flow velocities, which is reflected in the measured power. The influence of shear is comparably small on both the flow field and the turbine performance. The higher of the two turbine positions yields higher power output overall. Furthermore, it was shown that the impact of the turbine on the flow field is significant for all inflow conditions and can vary substantially depending on the inflow.

Publisher

AIP Publishing

Subject

Renewable Energy, Sustainability and the Environment

Reference60 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3