Classification of the HCN isomerization reaction dynamics in Ar buffer gas via machine learning

Author:

Yamashita Takefumi12ORCID,Miyamura Naoaki1,Kawai Shinnosuke3ORCID

Affiliation:

1. Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo 1 , 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan

2. Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University 2 , 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan

3. Department of Chemistry, Faculty of Science, Shizuoka University 3 , 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan

Abstract

The effect of the presence of Ar on the isomerization reaction HCN ⇄ CNH is investigated via machine learning. After the potential energy surface function is developed based on the CCSD(T)/aug-cc-pVQZ level ab initio calculations, classical trajectory simulations are performed. Subsequently, with the aim of extracting insights into the reaction dynamics, the obtained reactivity, that is, whether the reaction occurs or not under a given initial condition, is learned as a function of the initial positions and momenta of all the atoms in the system. The prediction accuracy of the trained model is greater than 95%, indicating that machine learning captures the features of the phase space that affect reactivity. Machine learning models are shown to successfully reproduce reactivity boundaries without any prior knowledge of classical reaction dynamics theory. Subsequent analyses reveal that the Ar atom affects the reaction by displacing the effective saddle point. When the Ar atom is positioned close to the N atom (resp. the C atom), the saddle point shifts to the CNH (HCN) region, which disfavors the forward (backward) reaction. The results imply that analyses aided by machine learning are promising tools for enhancing the understanding of reaction dynamics.

Funder

Japan Society for the Promotion of Science

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3