Numerical investigation of supercritical combustion dynamics in a multi-element LOx–methane combustor using flamelet-generated manifold approach

Author:

Sharma Abhishek12ORCID,De Ashoke23ORCID,Kumar S. Sunil1ORCID

Affiliation:

1. Liquid Propulsion Systems Center, ISRO 1 , Valiamala, 695547, Thiruvananthapuram, India

2. Department of Aerospace Engineering, Indian Institute of Technology Kanpur 2 , 208016, Kanpur, India

3. Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur 3 , 208016, Kanpur, India

Abstract

The article investigates liquid oxygen (LOx)–methane supercritical combustion dynamics in a multi-element rocket-scale combustor using large eddy simulation (LES). A complex framework of real gas thermodynamics and flamelet-generated manifold (FGM) combustion model is invoked to simulate transcritical oxygen injection and supercritical methane combustion. A benchmark Mascotte chamber, rocket combustion Modeling (RCM) test case, i.e., RCM-3 (V04)/G2 test case, is used to validate the real gas FGM model in the LES framework. The validation study accurately reproduces experimental flame structure and OH concentration, demonstrating the FGM model's importance in incorporating finite rate kinetics in LOx–methane combustion. Subsequently, the numerical framework investigates a specially designed multi-element combustion chamber featuring seven bidirectional swirl coaxial injectors. The analyses capture the complex hydrodynamics and combustion dynamics associated with multiple swirl injectors operating at supercritical pressure, effectively demonstrating the initiation of transverse acoustic waves and examining the effect of local sound speed on the evolution of acoustic modes in the combustor. The dominant frequency modes shed light on understanding the role of injectors in enhanced combustor dynamics. Spectral analysis reveals the interplay of the upstream injector and chamber acoustics due to possible frequency coupling. The results also highlight the effect of fuel injection temperature on the stability of the combustor, revealing a violent dynamic activity for lower fuel injection temperature associated with the longitudinal acoustic mode of the combustor. The investigation appropriately reproduces self-sustained limit-cycle oscillations at lower fuel injection temperatures and corroborates the conventional understanding of combustor instability.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3