High-throughput piezoelectric droplet dispenser driven by ultra-low voltage

Author:

Li DegeORCID,Wang Jide,Yang Guodong,Wu XinleiORCID,Li Zihao,Hu Guofang,Wang Xiaolong,Liu Yonghong,Zhang YanzhenORCID

Abstract

Efficient and facile generation of tiny droplets is critical to many cutting-edge applications, such as flexible electronic skin, customized circuits, and micro-electro-mechanical systems. However, conventional piezoelectric inkjet printing techniques show more prominent problems of high driving voltage and relatively low printing frequency. Here, a novel principle for high-throughput droplet dispensing was proposed based on the resonance of the liquid column within the glass capillary. The mechanisms of this high-throughput piezoelectric droplet dispensing technique were studied both experimentally and theoretically. It is demonstrated experimentally that the resonance frequencies of different orders of the liquid column in the capillary fit perfectly with the theoretical value. It is further demonstrated that when the working frequency is close to the resonant frequency of piezoelectric ceramic, droplets can be ejected out by a driving voltage as low as 1 V. This ultra-low driving voltage and power consumption make this dispenser compatible with various digital transistor–transistor logic or complementary metal–oxide–semiconductor drive circuits without any power amplifier.

Funder

National Natural Science Foundation of China

Taishan Scholar Foundation of Shandong Province

Fundamental Research Funds for the Central Universities

Excellent Young Scientisits Fund of Shandong Province

Science and Technology Support Plan for Youth Innovation of Colleges and Universities of Shandong Province of China

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3