Epileptic detection in single and multi-lead EEG signals using persistent homology based on bi-directional weighted visibility graphs

Author:

Yang Xiaodong1ORCID,Ren Yanlin1ORCID,Hong Binyi1ORCID,He Aijun2,Wang Jun3,Wang Zhixiao1ORCID

Affiliation:

1. School of Computer Science and Technology, China University of Mining and Technology 1 , Xuzhou 221116, China

2. School of Electronic Science and Engineering, Nanjing University 2 , Nanjing 210093, China

3. School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications 3 , Nanjing 210023, China

Abstract

Epilepsy is a widespread neurological disorder, and its recurrence and suddenness are making automatic detection of seizure an urgent necessity. For this purpose, this paper performs topological data analysis (TDA) of electroencephalographic (EEG) signals by the medium of graphs to explore the potential brain activity information they contain. Through our innovative method, we first map the time series of epileptic EEGs into bi-directional weighted visibility graphs (BWVGs), which give more comprehensive reflections of the signals compared to previous existing structures. Traditional graph-theoretic measurements are generally partial and mainly consider differences or correlations in vertices or edges, whereas persistent homology (PH), the essential part of TDA, provides an alternative way of thinking by quantifying the topology structure of the graphs and analyzing the evolution of these topological properties with scale changes. Therefore, we analyze the PH for BWVGs and then obtain the two indicators of persistence and birth–death for homology groups to reflect the topology of the mapping graphs of EEG signals and reveal the discrepancies in brain dynamics. Furthermore, we adopt neural networks (NNs) for the automatic detection of epileptic signals and successfully achieve a classification accuracy of 99.67% when distinguishing among three different sets of EEG signals from seizure, seizure-free, and healthy subjects. In addition, to accommodate multi-leads, we propose a classifier that incorporates graph structure to distinguish seizure and seizure-free EEG signals. The classification accuracies of the two subjects used in the classifier are as high as 99.23% and 94.76%, respectively, indicating that our proposed model is useful for the analysis of EEG signals.

Funder

Xuzhou Key Research and Development Program

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3