Learning QM/MM potential using equivariant multiscale model

Author:

Lei Yao-Kun123ORCID,Yagi Kiyoshi12ORCID,Sugita Yuji1234ORCID

Affiliation:

1. Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research 1 , Wako, Saitama 351-0198, Japan

2. Computational Biophysics Research Team, RIKEN Center for Computational Science 2 , Kobe, Hyogo 650-0047, Japan

3. RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS) 3 , Wako, Saitama 351-0198, Japan

4. Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research 4 , Kobe, Hyogo 650-0047, Japan

Abstract

The machine learning (ML) method emerges as an efficient and precise surrogate model for high-level electronic structure theory. Its application has been limited to closed chemical systems without considering external potentials from the surrounding environment. To address this limitation and incorporate the influence of external potentials, polarization effects, and long-range interactions between a chemical system and its environment, the first two terms of the Taylor expansion of an electrostatic operator have been used as extra input to the existing ML model to represent the electrostatic environments. However, high-order electrostatic interaction is often essential to account for external potentials from the environment. The existing models based only on invariant features cannot capture significant distribution patterns of the external potentials. Here, we propose a novel ML model that includes high-order terms of the Taylor expansion of an electrostatic operator and uses an equivariant model, which can generate a high-order tensor covariant with rotations as a base model. Therefore, we can use the multipole-expansion equation to derive a useful representation by accounting for polarization and intermolecular interaction. Moreover, to deal with long-range interactions, we follow the same strategy adopted to derive long-range interactions between a target system and its environment media. Our model achieves higher prediction accuracy and transferability among various environment media with these modifications.

Funder

RIKEN

Japan Society for the Promotion of Science

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Software Infrastructure for Next-Generation QM/MM−ΔMLP Force Fields;The Journal of Physical Chemistry B;2024-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3