Interactions of laser-driven tin ejecta microjets over phase transition boundaries

Author:

Saunders Alison M.1ORCID,Sun Yuchen1ORCID,Horwitz Jeremy A. K.1ORCID,Ali Suzanne J.1ORCID,Eggert Jon H.1ORCID,Mackay Kyle K.1ORCID,Morgan Brandon E.1ORCID,Najjar Fady M.1ORCID,Park Hye-Sook1ORCID,Ping Yuan1ORCID,Pino Jesse1ORCID

Affiliation:

1. Lawrence Livermore National Laboratory, Livermore , California 94550, USA

Abstract

Ejecta microjets offer an experimental methodology to study high-speed particle laden-flow interactions, as microjets consist of millions of particulates traveling at velocities of several kilometers per second and are easily generated by most common shock drives. Previous experiments on the OMEGA Extended Performance laser found that collisions between two counter-propagating laser-driven tin ejecta microjets varied as a function of drive pressure; jets generated near shock pressures of 10 GPa passed through each other without interacting, whereas jets generated at shock pressures of over 100 GPa interacted strongly, forming a cloud around the center interaction point. In this paper, we present a more systematic scan of tin ejecta microjet collisions over intermediate pressure regimes to identify how and at what shock pressure interaction behavior onsets. Radiographs of interacting microjets at five different laser drive energies qualitatively demonstrate that interaction behavior onsets slowly as a function of laser drive energy. Quantitative mass and density metrics from each radiograph provide trends on jet characteristics and collisional mass dispersion. It is observed that jetting mass, jet densities, and mass dispersion increase with increasing drive pressures and that the increased jet density at the higher drive energies may account for the increased mass dispersion. This work provides an important step in the understanding of tin ejecta microjet collisions and paves the way for future studies on the physics dominating high-speed particle-laden flow interactions.

Funder

Lawrence Livermore National Laboratory

Publisher

AIP Publishing

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3