Quantum confinement effect on defect level of hydrogen doped rutile VO2 nanowires

Author:

Dey Manoj1ORCID,Chowdhury Suman1ORCID,Kumar Sonu1ORCID,Kumar Singh Abhishek1ORCID

Affiliation:

1. Materials Research Centre, Indian Institute of Science, Bangalore 560012, India

Abstract

Accurate description of solubility and defect ionization energies in low dimensional nanostructures is critical for electronic applications of semiconductors with improved functionalities. Here, we present quantum confinement effect driven strategies for tuning defect level of hydrogen doping in the core region of rutile [Formula: see text](R) nanowires. The inverse dependence of a bandgap with a diameter ([Formula: see text]) confirms the presence of quantum confinement effect in nanowires. The hydrogen doping in both interstitial and substitution at the O site behaves as a deep donor in low diameter nanowires, where the effect of quantum confinement is significant. The position of a donor charge transition level becomes increasingly shallower with increased nanowire diameters. The ionization energies of hydrogen defects decrease for larger-diameter nanowires due to the dielectric screening effect increment. This indicates the possibility of achieving n-type dopability with large diameter [Formula: see text](R) nanowires. This study prescribes the strategies for optimizing doping and the defect level for extensive applications of highly correlated 1D nanostructured materials.

Funder

India-Korean Joint Programme of Cooperation in Science and Technology

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3