An immersed boundary-lattice Boltzmann flux solver for simulation of flows around structures with large deformation

Author:

Zhang HuaORCID,Liu YaguangORCID,Zhang ZehuaORCID,Wang Lian-PingORCID,Shu ChangORCID

Abstract

In this paper, we present an immersed boundary-lattice Boltzmann flux solver (IB-LBFS) to simulate the interactions of viscous flow with deformable elastic structures, namely, two-dimensional (2D) and three-dimensional (3D) capsules formed by elastic membranes. The IB-LBFS is based on a finite-volume formulation and makes use of hydrodynamic conservation equations with fluxes computed by a kinetic approach; thus, it is more flexible and efficient than the standard immersed boundary-lattice Boltzmann methods. The membrane of the 2D capsule is represented by a set of discrete Lagrangian points, with in-plane and bending forces acting on the membrane obtained by a finite difference method. In contrast, the membrane of a 3D capsule is discretized into flat triangular elements with membrane forces calculated by an energy-based finite-element method. The IB-LBFS is first validated by studying the deformation of a circular capsule in a linear Newtonian and a power-law shear flow. Next, the deformation dynamics of a spherical, an oblate spheroidal, and a biconcave capsule in a simple shear flow are simulated. For an initially spherical capsule, the tank-treading motion of its membrane is reproduced at the steady state; while for oblate spheroidal and biconcave capsules, the swinging and tumbling motions are observed. Furthermore, under certain parameter settings, the transient mode from tumbling to swinging motions is also found, showing a rich and complex dynamic behavior of non-spherical capsules. These results indicate that the IB-LBFS can be employed in future studies concerning the dynamics of a capsule suspension in more realistic flows.

Funder

National Natural Science Foundation of China

Guangdong Provincial Key Laboratory of Turbulence Research and Applications

Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications

Science, Technology and Innovation Commission of Shenzhen Municipality

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3