Numerical study of magnetic island coalescence using magnetohydrodynamics with adaptively embedded particle-in-cell model

Author:

Li Dion1ORCID,Chen Yuxi23ORCID,Dong Chuanfei234ORCID,Wang Liang23ORCID,Toth Gabor5ORCID

Affiliation:

1. Department of Nuclear Engineering and Radiological Sciences, University of Michigan 1 , Ann Arbor, Michigan 48109, USA

2. 2Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08540, USA

3. 3Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544, USA

4. 4Department of Astronomy, Boston University, Boston, Massachusetts 02215, USA

5. 5Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA

Abstract

Collisionless magnetic reconnection typically requires kinetic treatment that is, in general, computationally expensive compared to fluid-based models. In this study, we use the magnetohydrodynamics with an adaptively embedded particle-in-cell (MHD-AEPIC) model to study the interaction of two magnetic flux ropes. This innovative model embeds one or more adaptive PIC regions into a global MHD simulation domain such that the kinetic treatment is only applied in regions where the kinetic physics is prominent. We compare the simulation results among three cases: (1) MHD with adaptively embedded PIC regions, (2) MHD with statically (or fixed) embedded PIC regions, and (3) a full PIC simulation. The comparison yields good agreement when analyzing their reconnection rates and magnetic island separations as well as the ion pressure tensor elements and ion agyrotropy. In order to reach good agreement among the three cases, large adaptive PIC regions are needed within the MHD domain, which indicates that the magnetic island coalescence problem is highly kinetic in nature, where the coupling between the macro-scale MHD and micro-scale kinetic physics is important.

Funder

Princeton Plasma Physics Laboratory

Office of Science

NASA Headquarters

Division of Atmospheric and Geospace Sciences

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3