Rheology-based wall function approach for wall-bounded turbulent flows of Herschel–Bulkley fluids

Author:

Yusufi B. K.1ORCID,Kapelan Z.1ORCID,Mehta D.1ORCID

Affiliation:

1. Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology , Delft 2628 CN, The Netherlands

Abstract

Modeling fully developed turbulent flow for Herschel–Bulkley (HB) fluids in pipes is a long-standing challenge. Existing semi-empirical, theoretical, and numerical methods are either inconsistent with experimental data or are validated for low Reynolds numbers. This study focuses on validating a novel approach using rheology-based wall functions within Reynolds-averaged Navier–Stokes solvers. Simulations of wall shear stress and velocity profiles were conducted across a wide range of Reynolds numbers using a single-phase HB fluid, with measurements taken both upstream and downstream of a 90° pipe bend. Two turbulence closure models, the k–ε model and the Reynolds stress model, were employed with the wall function implemented as a specified shear boundary condition. Results demonstrate significant improvements over the Newtonian-based models, such as standard wall function by Launder–Spalding or with available semi-empirical models, achieving strong statistical correlations and minimal deviation (from the experimental findings) at high Reynolds numbers. The study also examines the utility of the wall viscosity Reynolds number and assesses the reliability of semi-empirical models for HB fluids. These findings offer valuable insights for enhancing modeling accuracy in complex fluid flow scenarios, with potential applications spanning industries like mining, chemical processing, petroleum transportation, and sanitation systems, providing practical alternatives to costly experimental procedures in pipe systems.

Funder

Technische Universiteit Delft

Publisher

AIP Publishing

Reference61 articles.

1. A study on non-Newtonian flow in pipe lines;Bull. JSME,1959

2. Ueber die ausgebildete Turbulenz

3. Turbulent flow of non-Newtonian systems;AIChE J.,1959

4. On physically similar systems; illustrations of the use of dimensional equations;Phys. Rev.,1914

5. Friction factors for turbulent non-Newtonian fluid flow in circular pipes;South Afr. Mech. Eng.,1963

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3