Quantum efficiency enhancement in simulated nanostructured negative electron affinity GaAs photocathodes

Author:

Rahman Md Aziz Ar12ORCID,Zhang Shukui3ORCID,Elsayed-Ali Hani E.456ORCID

Affiliation:

1. Department of Physics 1 , 4600 Elkhorn Ave, , Norfolk, Virginia 23529, USA

2. Old Dominion University 1 , 4600 Elkhorn Ave, , Norfolk, Virginia 23529, USA

3. Thomas Jefferson National Accelerator Facility 2 , 12000 Jefferson Avenue in Newport News, Virginia 23606, USA

4. Department of Electrical and Computer Engineering 3 , 231 Kaufman Hall, , Virginia 23529, USA

5. Old Dominion University 3 , 231 Kaufman Hall, , Virginia 23529, USA

6. Applied Research Center, Thomas Jefferson National Accelerator Facility 4 , 12000 Jefferson Avenue in Newport News, Virginia 23606, USA

Abstract

Nanostructured negative electron affinity GaAs photocathodes for a polarized electron source are studied using finite difference time domain optical simulation. The structures studied are nanosquare columns, truncated nanocones, and truncated nanopyramids. Mie-type resonances in the 700–800 nm waveband, suitable for generation of polarized electrons, are identified. At resonance wavelengths, the nanostructures can absorb up to 99% of the incident light. For nanosquare columns and truncated nanocones, the maximum quantum efficiency (QE) at 780 nm obtained from simulation is 27%, whereas for simulated nanopyramids, the QE is ∼21%. The high photocathode quantum efficiency is due to the shift of Mie resonance toward the longer wavelength, leading to increased light absorption. The field profile distribution shows the excitation of dipole and quadrupole modes within the nanostructures at resonant frequencies. This leads to enhanced photoabsorption and photoelectron generation closer to emission surfaces than for a flat photocathode. The enhanced photoabsorption and reduced electron transport distance for the nanostructured photocathode enhance its QE compared to that for the flat surface wafer.

Funder

U.S. Department of Energy

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3