A comparative study of the correlation between the structure and the dynamics for systems interacting via attractive and repulsive potentials

Author:

Sharma Mohit12ORCID,Nandi Manoj Kumar3ORCID,Maitra Bhattacharyya Sarika12ORCID

Affiliation:

1. Polymer Science and Engineering Division, CSIR-National Chemical Laboratory 1 , Pune 411008, India

2. Academy of Scientific and Innovative Research (AcSIR) 2 , Ghaziabad 201002, India

3. Université Claude Bernard Lyon 1, Institut National de la Santé et de la Recherche Médicale, Stem Cell and Brain Research Institute 3 , Bron 69500, France

Abstract

We present the study of the structure–dynamics correlation for systems interacting via attractive Lennard-Jones (LJ) and its repulsive counterpart, the Weeks–Chandler–Andersen (WCA) potentials. The structural order parameter (SOP) is related to the microscopic mean-field caging potential. At a particle level, the SOP shows a distribution. Although the two systems have similar pair structures, their average SOP differs. However, this difference alone is insufficient to explain the well known slowing down of the dynamics in the LJ system at low temperatures. The slowing down can be explained in terms of a stronger coupling between the SOP and the dynamics. To understand the origin of this system specific coupling, we study the difference in the microscopic structure between the hard and soft particles. We find that for the LJ system, the structural differences of the hard and soft particles are more significant and have a much stronger temperature dependence compared to the WCA system. Thus, the study suggests that attractive interaction creates more structurally different communities. This broader difference in the structural communities is probably responsible for stronger coupling between the structure and dynamics. Thus, the system specific structure–dynamics correlation, which also leads to a faster slowing down in the dynamics, appears to have a structural origin. A comparison of the predictive power of our SOP with the local energy and two body excess entropy in determining the dynamics shows that in the LJ system, the enthalpy plays a dominant role and in the WCA system, the entropy plays a dominant role, and our SOP can capture both these contributions.

Funder

Science and Engineering Research Board

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3