Effect of gravity modulation on weakly nonlinear bio-thermal convection in a porous medium layer

Author:

Kopp M. I.1ORCID,Yanovsky V. V.12ORCID

Affiliation:

1. Institute for Single Crystals, NAS Ukraine 1 , Nauky Ave. 60, Kharkov 61001, Ukraine

2. The Department of Artificial Intelligence and Software, V. N. Karazin Kharkiv National University 2 , 4 Svobody Sq., Kharkov 61022, Ukraine

Abstract

Investigating thermal convection within porous media permeated by fluids and micro-organisms stands as a significant inquiry with broad relevance across geophysical and engineering domains. Studying convection within porous media can aid in controlling temperature and nutrient distribution for cell growth and tissue regeneration, as well as the efficiency of biofuel fermentation and production processes. Hence, the primary objective of this study is to investigate the influence of time-periodic gravitational forces on Darcy–Brinkman bio-thermal convection within a porous medium layer. This medium is saturated with a Newtonian fluid that encompasses gyrotactic micro-organisms. The gravity modulation amplitude is assumed to be very small. A weak nonlinear stability analysis is performed to analyze the stationary mode of bioconvection. The heat transport, measured by the Nusselt number, is governed by a non-autonomous Ginzburg–Landau equation. The research explores the influence of several parameters on heat transport, including the Vadaszs number, the modified bioconvective Rayleigh–Darcy number, cell eccentricity, modulation frequency, and modulation amplitude. The results are presented graphically, illustrating the impact of these parameters on heat transfer. The findings reveal that both the Vadaszs number and the modulation amplitude have a positive effect on heat transfer, enhancing the process. On the other hand, an increase in the modified bioconvection Rayleigh–Darcy number and cell eccentricity leads to a decrease in heat transfer. Furthermore, a comparison between the modulated and unmodulated systems indicates that the modulated systems have a more significant influence on the stability problem compared to the unmodulated systems. This highlights the effectiveness of external modulation in controlling heat transport within the system.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Reference47 articles.

1. Instability and convection in rotating porous media: A review;Fluids,2019

2. The effect of compressibility, rotation and magnetic field on thermal instability of Walters’ fluid permeated with suspended particles in porous medium;Therm. Sci.,2014

3. Hall effects on MHD flow through porous medium in a rotating parallel plate channel;Int. J. Appl. Eng. Res.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3