Large electrocaloric effect near room temperature induced by domain switching in ferroelectric nanocomposites

Author:

Yu Zeqing1ORCID,Hou Xu2ORCID,Zheng Sizheng1ORCID,Bin Chengwen1ORCID,Wang Jie134ORCID

Affiliation:

1. Department of Engineering Mechanics, Zhejiang University 1 , Zheda Road 38, Hangzhou, Zhejiang 310027, China

2. Department of Industrial and Systems Engineering, Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University 2 , Hung Hom, Kowloon, Hong Kong, China

3. Zhejiang Laboratory 3 , Hangzhou, Zhejiang 311100, China

4. Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University 4 , Zheda Road 38, Hangzhou, Zhejiang 310027, China

Abstract

The solid-state refrigeration technique based on the electrocaloric effect (ECE) of ferroelectric materials has been regarded as a promising alternative to vapor compression systems due to its advantages of high efficiency and easy miniaturization. However, the small adiabatic temperature change (ATC) and narrow operating temperature range of ferroelectric materials are key obstacles for their practical applications of ECE refrigeration. To improve the ECE performance of ferroelectric polymer poly(vinylidene fluoride) [P(VDF-TrFE)], PbZr1−xTixO3 (PZT) nanoparticles with larger polarization is herein introduced to form ferroelectric nanocomposites. The phase-field simulation is employed to investigate the dynamic hysteresis loops and corresponding domain evolution of the ferroelectric nanocomposites. The temperature-dependent ATC values are calculated using the indirect method based on the Maxwell relation. The appearance of the double hysteresis loop is observed in P(VDF-TrFE) nanocomposite filled with PbZr0.1Ti0.9O3 nanoparticles [P(VDF-TrFE)–PZT0.9], which is mainly caused by a microscopic domain transition from single domain to polar vortex. Compared to the P(VDF-TrFE), enhanced ATC values associated with the domain transition are unveiled in P(VDF-TrFE)–PZT0.9, and the temperature range of excellent ECE is also effectively broadened. In addition, as the component x of filled PZT nanoparticles increases to cross the morphotropic phase boundary (MPB), the maximum ATC value shows a significant increase. The results presented in this work not only explain the mechanism of domain transition induced excellent ECE in the P(VDF-TrFE)–PZT nanocomposite, but also stimulate future studies on enhancing ECE of P(VDF-TrFE) by introducing ferroelectric nanofillers.

Funder

PolyU grant

National Natural Science Foundation of China

RGC Postdoctoral Fellowship Scheme

PolyU Distinguished Postdoctoral Fellowship Scheme

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3