Affiliation:
1. Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
2. Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501, USA
Abstract
In this experimental study of the nonlinear loss mechanism between traveling localized excitation and the underlying extended normal mode spectrum for a 1D lattice, three types of cyclic, electric, nonlinear transmission lines (NLTLs) are used. They are nonlinear capacitive, inductive, and capacitive+inductive NLTLs. To maintain a robust, steady-state traveling intrinsic localized mode (ILM), a traveling wave driver is used. The ILM loses energy because of a resonance between it and the extended NLTL modes. A wake field excitation is detected directly from ILM velocity experiments by the decrease in ILM speed and by the observation of the wake. Its properties are quantified via a two-dimensional Fourier map in the frequency-wavenumber domain, determined from the measured spatial-time voltage pattern. Simulations support and extend these experimental findings. We find for the capacitive+inductive NLTL configuration, when the two nonlinear terms are theoretically balanced, the wake excitation is calculated to become very small, giving rise to supertransmission over an extended driving frequency range.
Subject
Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献