Low-temperature magnetoresistance of multi-walled carbon nanotubes with perfect structure

Author:

Ovsiienko I. V.1ORCID,Len T. A.1ORCID,Mirzoiev I. G.2,Beliayev E. Yu.2ORCID,Gnida D.3ORCID,Matzui L. Yu.1ORCID,Heraskevych V. M.1

Affiliation:

1. Department of Physics, Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine

2. B. Verkin Institute for Low Temperature Physics and Engineering of NAS of Ukraine, Kharkiv 61103, Ukraine

3. Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wroclaw, Poland

Abstract

The magnetoresistance of multi-walled carbon nanotubes is studied in the temperature range 4.2–200 K and magnetic fields up to 9 T. The magnetoresistance is negative in the whole temperature range. For small magnetic fields and low temperatures, the dependence of the relative conductivity on the magnetic field is quadratic. However, as the magnetic field increases, it becomes logarithmic, which may be described by weak localization and charge carriers’ interaction models. We show that the addition to conductivity due to the charge carriers’ weak localization significantly exceeds the addition due to the effect of the charge carriers’ interaction. The Fermi energy and the charge carriers’ interaction constant were estimated in terms of these models using the experimental data on the magnetoresistance field and temperature dependences. Also, we determined the exact form for the temperature dependence of the phase relaxation time of the charge carriers’ wave function.

Funder

Globular Carbon based Structures and Metamaterials for Enhanced Electromagnetic Protection

Publisher

AIP Publishing

Subject

General Physics and Astronomy,Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3