Deep ensembles vs committees for uncertainty estimation in neural-network force fields: Comparison and application to active learning

Author:

Carrete Jesús1ORCID,Montes-Campos Hadrián23ORCID,Wanzenböck Ralf1ORCID,Heid Esther1ORCID,Madsen Georg K. H.1ORCID

Affiliation:

1. Institute of Materials Chemistry, TU Wien 1 , A-1060 Vienna, Austria

2. Grupo de Nanomateriais, Fotónica e Materia Branda, Departamento de Física de Partículas, Universidade de Santiago de Compostela 2 , E-15782 Santiago de Compostela, Spain

3. CIQUP, Institute of Molecular Sciences (IMS)—Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto 3 , Rua Campo Alegre, 4169-007 Porto, Portugal

Abstract

A reliable uncertainty estimator is a key ingredient in the successful use of machine-learning force fields for predictive calculations. Important considerations are correlation with error, overhead during training and inference, and efficient workflows to systematically improve the force field. However, in the case of neural-network force fields, simple committees are often the only option considered due to their easy implementation. Here, we present a generalization of the deep-ensemble design based on multiheaded neural networks and a heteroscedastic loss. It can efficiently deal with uncertainties in both energy and forces and take sources of aleatoric uncertainty affecting the training data into account. We compare uncertainty metrics based on deep ensembles, committees, and bootstrap-aggregation ensembles using data for an ionic liquid and a perovskite surface. We demonstrate an adversarial approach to active learning to efficiently and progressively refine the force fields. That active learning workflow is realistically possible thanks to exceptionally fast training enabled by residual learning and a nonlinear learned optimizer.

Funder

Austrian Science Fund

Ministerio de Ciencia e Innovación

Universidade de Santiago de Compostela

Fundação para a Ciência e a Tecnologia

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Uncertainty quantification in atomistic simulations of silicon using interatomic potentials;The Journal of Chemical Physics;2024-08-14

2. Improving Molecular‐Dynamics Simulations for Solid–Liquid Interfaces with Machine‐Learning Interatomic Potentials;Chemistry – A European Journal;2024-08-12

3. Spatially Resolved Uncertainties for Machine Learning Potentials;Journal of Chemical Information and Modeling;2024-08-07

4. Uncertainty quantification by direct propagation of shallow ensembles;Machine Learning: Science and Technology;2024-07-05

5. Symbolic Interpretation of Trained Neural Network Ensembles;International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3