Entrapment and mobilization dynamics during the flow of viscoelastic fluids in natural porous media: A micro-scale experimental investigation

Author:

Mohamed Abdelhalim I. A.1ORCID,Khishvand Mahdi1ORCID,Piri Mohammad1

Affiliation:

1. Department of Petroleum Engineering, University of Wyoming , Laramie, Wyoming 82071-2000, USA

Abstract

Capillary desaturation process was investigated as a function of wetting phase rheological signatures during the injection of Newtonian and non-Newtonian fluids. Two sets of two-phase imbibition flow experiments were conducted on a water-wet sandstone core sample using brine and viscoelastic polymer solutions. During the experiments, a high-resolution micro-computed tomography scanner was employed to directly map pore-level fluid occupancies within the pore space. The results of the experiments revealed that at a given capillary number, the viscoelastic polymer was more efficient than the brine in recovering the non-wetting oil phase. At low capillary numbers, this is attributed to the improved accessibility of the viscoelastic polymer solution to the entrance of pore elements, which suppressed snap-off events and allowed more piston-like and cooperative pore-body filling events to contribute to oil displacement. For intermediate capillary numbers, the onset of elastic turbulence caused substantial desaturation, while at high capillary numbers, the superimposed effects of higher viscous and elastic forces further improved the mobilization of the trapped oil ganglia by the viscoelastic polymer. In the waterflood, however, the mobilization of oil globules was the governing recovery mechanism, and the desaturation process commenced only when the capillary number reached a threshold value. These observations were corroborated with the pore-level fluid occupancy maps produced for the brine and viscoelastic polymer solutions during the experiments. Furthermore, at the intermediate and high capillary numbers, the force balance and pore-fluid occupancies suggested different flow regimes for the non-Newtonian viscoelastic polymer. These regions are categorized in this study as elastic-capillary- and viscoelastic-dominated flow regimes, different from viscous-capillary flow conditions that are dominant during the flow of Newtonian fluids. Moreover, we have identified novel previously unreported pore-scale displacement events that take place during the flow of viscoelastic fluids in a natural heterogeneous porous medium. These events, including coalescence, fragmentation, and re-entrapment of oil ganglia, occurred before the threshold of oil mobilization was reached under the elastic-capillary-dominated flow regime. In addition, we present evidence for lubrication effects at the pore level due to the elastic properties of the polymer solution. Furthermore, a comparison of capillary desaturation curves generated for the Newtonian brine and non-Newtonian viscoelastic polymer revealed that the desaturation process was more significant for the viscoelastic polymer than for the brine. Finally, the analysis of trapped oil clusters showed that the ganglion size distribution depends on both the capillary number and the rheological properties of fluids.

Funder

Halliburton

Hess Corporation

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference113 articles.

1. Mechanisms of the displacement of one fluid by another in a network of capillary ducts;J. Fluid Mech.,1983

2. A. I. A. Mohamed , “ Entrapment and mobilization dynamics during capillary desaturation in natural porous media,” Doctoral dissertation ( University of Wyoming, 2021).

3. Mechanisms of entrapment and mobilization of oil in porous media,1997

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3