Engineering lattice oxygen defects and polaronic transport in vanadium pentoxide via isovalent phosphorus doping

Author:

Sarkar Tathagata1ORCID,Majumder Saptak1ORCID,Biswas Soumya1ORCID,Rose Sona S.1ORCID,Kamble Vinayak1ORCID

Affiliation:

1. School of Physics, Indian Institute of Science Education and Research Thiruvananthapuram , Thiruvananthapuram 695551, Kerala, India

Abstract

Oxygen vacancies are equilibrium defects in the vanadium pentoxide system that give rise to polaronic hopping transport via V4+ charge compensating defect. In this paper, we report the tunability of polaron formation, the hopping process, and their magnetic signature by substitution of isovalent (5+) phosphorus ions in the V5+ site. The powder x-ray diffraction data show a monotonous shift in lattice parameters with progressive P-doping, confirming the presence of a substitutional dopant. The polaron hopping energy reduced from 0.307 to 0.290 eV depicting a lower defect concentration in P-doping in V2O5. At low temperatures, it is found to obey the Efros–Shklovskii variable range hopping mechanism. The estimated hopping range increased to 1.6 ± 0.1 nm in doped V2O5 in contrast to ∼1.3 nm in the undoped one. The electron spin resonance measurements show a diminishing broad ferromagnetic signal and rising paramagnetic signal (g = 1.97) with progressive P-doping depicting predominant isolated electronic spins in the doped sample. The same is corroborated in room temperature M–H with a distinct hysteresis that diminishes with P-doping and a rise of a paramagnetic slope. Moreover, the reduced oxygen defects and lower V4+ relative occupancy together with fermi level fall toward intrinsic position are substantiated by photoelectron emission studies.

Funder

Science and Engineering Research Board

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3